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Numerical study on ergodic properties of triangular billiards
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We consider the motion of a point particle in right triangular billiards. By considering the global dynamics
~when acute angles are not rationally connected top!, or the discrete reduced dynamics~when acute angles are
rational multiples ofp!, we find numerical evidence for the conjecture that the motion is ergodic and weakly
mixing. These dynamical features are intimately related to nontrivial scaling properties of the spectrum of the
evolution operator.@S1063-651X~97!12703-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

We consider the motion of a point particle, with uni
velocity, inside a right triangular billiard. This is equivale
@1# to the motion of two point particles on the unit interva
interacting only through elastic collisions, their mass ra
inducing the anglea of the corresponding triangle via th
relationa5arctanAm1 /m2.

The way to look at the dynamics on these triangular b
liards depends essentially on whether or nota is rationally
connected top. As a matter of fact we can associate a gro
to each triangle according to the following construction: d
note bys1,s2,s3 the reflections about the linesl 1 ,l 2 ,l 3
~factoring away translations by considering reflections
points on a circle! defined by the triangle’s sides; ThenWD

will be the subgroup generated by$si%, i51,2,3. Whena is
rationally connected top, the subgroupWD is finite, and
coincides withDN , the dihedral group corresponding to th
angle p/N, where N is the least common multiple o
n1 ,n2 ,n3 defined by vertex angles beingpmi /ni . Thus,
whena is rationally connected top, the phase space is spl
into invariant manifoldsRu , uP@0,p/N#, individuated by the
initial angle~the finite 2N set of possible angles is connect
to the initial one via operations ofDN!. Thus rational tri-
angles are obviously nonergodic: the interest is anyway
into dynamical properties of the flow restricted to the inva
ant surfacesRu ~directional dynamics!. The topology of these
invariant surfaces is dictated by the nature of vertex angle
can be shown~see, for instance,@2#! that the genus of the
surface is given by

g511
N

2 (
i51

3
mi21

ni
, ~1!

wherepmi /ni are indeed the vertex angles. We notice th
the invariant surfaces will be tori only when allmi51: this
means that, in the present case, the only integrable c
correspond toa5p/4, p/3, p/6.

Together with the continuous time flow, it is possible
introduce the Birkhoff-Poincare´ map, using the coordinate
s,f, where s is the position along the perimeter andf
P@2p/2, p/2# is the outgoing angle with respect to the no
mal in s. When we consider flows in a rational triangle, w
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remarked above that we have a finite set of 2N possible
angles: for each side this corresponds toN possible outgoing
angles, and thus, by consideringN replicas of the sides the
mapping becomes one dimensional. Once we normalize
the total length

mu5(
i51

3

l i~sinf i ,11sinf i ,21 • • •1sinf i N
!,

wherefi ,k , k51, . . . ,N, are the possible outgoing angle
from thei th side~whose length isl i!, we obtain a map of the
unit interval into itself, characterized by remarkable prop
ties: in fact it is an~orientation reversing! interval exchang-
ing transformation~see, for example,@1# for more details on
this feature, and further references are contained in@2,3#!.

A few facts are rigorously known about ergodic propert
of triangle billiards~or, more generally, for motion in po
lygonal billiards!: we follow closely @2,3#: ~i! The set of
ergodic triangles is a denseGd ~intersection of a countable
number of dense open sets! in a suitable topology@4#. ~ii !
The directional dynamics in a rational triangle is ergodic
almost all directions with respect to the Lebesgue meas
@4#. ~iii ! The directional dynamics in a rational triangle is n
mixing for any direction@5#. We also quote from@3#: ‘‘A
prevailing opinion in the mathematical community is th
polygonal billiards are never mixing, but this has not be
established. On the other hand, it seems plausible that t
are weakly mixing polygons, but this also remains an op
question.’’ As a matter of fact a theorem, which, howev
does not directly apply to triangles, establishing that we
mixing is aGd generic property in a particular class of p
lygonal billiards, has been proved in@6#. We recall~see, for
example,@1#! that a dynamical system is weakly mixing
for anyL2 pair of observables,

lim
t→`

1

t E0
t

dtF E
M
dm~x! f ~Ttx!g~x!

2E
M
dm~x! f ~x!E

M
dm~x!g~x!G250 ~2!

that is integrated correlation functions decay to zero, wh
correlation functions themselves have the same property
6384 © 1997 The American Physical Society
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55 6385NUMERICAL STUDY ON ERGODIC PROPERTIES OF . . .
if the system is in effect mixing. Together with dynam
properties, such as weak mixing, we also want to investig
numerically spectral properties. We denote by

Tt5E e2p i tldE~l! ~3!

the spectral resolution of the evolution operator. Then, e
fPL2(M ,m), orthogonal to 1, induces a spectral measure
^E~l!f u f &. There are connections between spectral and
namical properties: for instance~see, for example,@18#!, if
the set of measures just defined is absolutely continuous
respect to the Lebesgue measure then the system has
mixing.

II. DYNAMICAL AND SPECTRAL
QUANTITIES OBSERVED

We consider triangles such as the one in Fig. 1:a is the
acute angle formed with the horizontal axis. The units
chosen in such a way that the point particle has unit velo
and the horizontal side has length one. The observable w
correlations we investigate is the horizontal component
the velocityvx ~which has zero average with respect to t
invariant measuredm5(1/2pA)dx dy du, whereA denotes
the area of the triangle. So we denote byC(t) the ~phase
averaged! correlation function

C~ t !5E dmvxT
t~vx!, ~4!

while the corresponding integrated correlation function is

Cint~ t !5
1

t E0
t

dtuC~t!u2. ~5!

We may also consider time-averaged correlation functi
~which coincide with the former ones, when the system
ergodic!

Ctime~ t !5 lim
t→`

1

t E
0

t

d«Tt1«~vx!T
«~vx!. ~6!

FIG. 1. A triangle billiard.
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Correlation functions may also be defined for the Birkho
Poincare´ discrete dynamics: the invariant measure is in t
case proportional tods cos(f)df. In the former section we
observed that the directional dynamics for rational ca
leads to a map of the unit interval into itself~the orientation
reversing interval exchange transformation!: if we denote the
normalized phase variable byz, and byJ the mapping the
correlation function we consider for this case will refer
f (z)5sin@p~z21/2!#:

Cdd~n!5E
0

1

dz f~z! f ~Jnz!. ~7!

In terms of the spectral resolution of the evolution operat
Eq. ~4! may be rewritten as

C~ t !5E d^E~l!vxuvx&e2p i tl, ~8!

and thus in principle the spectral measure may be recov
by the correlation series via Fourier inversion. In practice
have to be careful as we have afinite correlation sequence
~moreover we have a discrete sampling of the continu
time!: as motivated in@8,9# the best approach seems to be
perform the~approximated! inversion of Eq.~8! by using a
triangular window@10#; this procedure guarantees also th
the finite approximations to the spectral measure will
positive. Thus, each correlation sequence out toTmax time
steps allows a reconstruction of the spectral measure dow
a scalel k5~2Tmax11!21 through

`m,l k
5

1

2Tmax11 (
j52Tmax

Tmax

WjC~ t j !e
2p i t jm/~2Tmax11!,

~9!

where the use of the triangular window implie
Wj5~Tmax2ut j u!/Tmax. A quantitative characterization of th
scaling properties of the spectral measure is provided,
instance, by the set of generalized dimensions@11# Dq ,
which are defined in terms of the sumsxk(q)5( j51

Nk ` j ,l k
q

through

Dq5 lim
k→`

1

q21

lnxk~q!

lnl k
~10!

whenqÞ1. Forq51 we have

D15 lim
k→`

(
j51

Nk

` j ,l k
ln` j ,l k

lnl k
. ~11!

These spectral exponents are related to dynamical prope
for instance,D2, the so-called correlation dimension, rule
the decay mode of the integrated correlation function@12,13#

Cint~ t !;t2D2. ~12!

The information dimension is also related to growth prop
ties in time of the moments of the probability distributio
@14–17#. We describe how to get such moments for the d
crete directional dynamics. Here we have a single phase v
able z: its value at timen is determined byn and z0 ~the
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6386 55ROBERTO ARTUSO, GIULIO CASATI, AND ITALO GUARNERI
initial value!. The dependence onz0 of a function of the
phase variablez may be expressed through a Fourier rep
sentation

f „z~n,z0!…5 (
k52`

`

ck~n!e2p iz0k. ~13!

We can thus define the moments

m~b!~n!5 (
k52`

`

ukub
1

n (
l50

n21

uck~ l !u2. ~14!

In particular we considered as phase function again,f (z)
5sin@p~z21/2!#. As the mappingJ is discontinuous, we are
forced to consider moments withb,1, otherwise we get
diverging quantities. If moments grow algebraically,

m~b!~n!;nw~b!, ~15!

then@14–16# D1 is a lower bound tow~b!/b. This description
originated in a quantum mechanical context, where th
moments are connected to the spreading of an initially lo
ized wave packet on a larger and larger number of b
elements.

III. NUMERICAL EXPERIMENTS

Irrational triangles

The first task is to check ergodicity: it is rather hard
exhibit this feature by just looking, for instance, at t
Birkhoff-Poincaréreturn map, as there must be quite diffe
ent time scales in the problem: this is essentially connec
to the possibility of recovering any angle~modulo horizontal
and vertical reflections! through a shifts. If we look at a
phase portrait for longer and longer time, we perceive so
sort of ‘‘hierarchical’’ filling of holes, which is presumably
directly connected to number-theoretical properties ofa: we
give an example of the phase portrait for quite long tim
sequences in Fig. 2, where our choice for the variable
such that the invariant measure coincides with the Lebes
measure.

A check on ergodicity was also performed in the quan
ties we want to study in some detail: the results support
expectation that motion in irrational triangles is ergodic.
an example consider Fig. 3, in which we compare the beh
ior of time averages and phase average for the autocor
tion function of the horizontal component of the velocit
Whenever we refer to phase averages we mean Monte C
integration~see, for example,@19#! over a set ofNph initial
conditions. The standard random number generator we u
based on a subtractive method~see Knuth@20# for details!: in
a variety of cases we checked that the use of a regular gr
initial conditions leads to the same results.

The next step involves a simultaneous analysis ofC(t)
andCint(t), as decay to zero of the phase averaged corr
tion function would not rule out mixing, while weak mixin
~as amaximalproperty! would require convergence to zer
of Cint(t), while the correlation function itself should no
have a t°` limit. A weak mixing property is supported
numerically when we consider the vertex anglea connected
to p through quadratic irrationals@in Figs. 4 and 5 we repor
-
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the results for a5p&/4, similar results hold fora
5p(A521)/4]. The integrated correlation functionCint(t)
exhibits always a power-law decay to zero~cf. Fig. 4!, with
an exponent that is slightly smaller that 1. By looking at F
5, we stress that a mixing property is not ruled out, as
correlation function itself seems to vanish asymptotica
albeit in a noisy way.

As explained in the former section we can reconstr
from the correlation sequence an approximation to the sp

FIG. 2. Phase portrait of a single trajectory ofa5p~A521!/4
~discrete dynamics!: the plot consists of 53104 points, each ob-
tained after 23106 collisions from the former.

FIG. 3. C(t) ~full line! andCtime(t), for a5p~A521!/4. Phase
average refers to 23105 initial conditions, while the time sequenc
giving Ctime(t) is Tmax5106.
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55 6387NUMERICAL STUDY ON ERGODIC PROPERTIES OF . . .
tral measure: in particular this allows for a calculation ofD2,
which, as remarked before, should coincide with the de
exponent. In Fig. 6 we plot finite order estimates ofD1 and
D2 for finer and finer scales~more and more correlation
points!. In Table I we compare decaying componentsg @such
asCint(t);t2g# andD2 @as reconstructed by Fourier inve
sion ofC(t)# for a number of irrational values ofa.

As regards the weak mixing conjecture, as amaximaler-
godic property, the situation is not resolved by our inves
gations, in the sense that apparently also correlation fu
tions tend to zero~and not only the integrated ones!. This
phenomenon does not seem to be related to num

FIG. 4. lnCint(t) vs ln t for a5p&/4. The phase average refe
to 23107 points; the dashed straight line has a slope2D2.0.95.

FIG. 5. lnuC(t)u vs lnt for the same case as Fig. 4.
y

-
c-

r-

theoretical properties ofa, as we can see from Fig. 7, wher
a is a poor irrational multiple ofp.

Rational triangles

Phase averages

We noted in the Introduction that whenevera is rationally
connected top the motion of the point particle is surely no
ergodic~and the phase space is foliated byRu invariant sur-
faces determined by the initial value of the velocity vec
and the group properties induced bya!. Nevertheless, the
decaying properties of phase averages~‘‘microcanonical’’
averages! are of some interest by themselves, even thoug
is a priori clear that they will not be connected to any tim
average. In particular, this point of view was originated so
years ago in@7#, where it was shown that~in some ‘‘ge-
neric’’ sense! phase averaged~on the energy surface! corre-
lation functions for integrable systems are expected to de
to their limit value asC(t)2C(`);t (12N)/2, whereN is the
number of degrees of freedom of the system. So we co

FIG. 6. lnxk~2! vs lnl k ~upper symbols!, and S`i ,kln`i ,k vs
lnl k for the same case as Fig. 4.D2 andD1 are the asymptotic
values of the respective slopes. The dashed lines are obta
through a least square fit over the last seven values.

TABLE I. g, D2, and D1 for a number of irrational vertex
angles. The errors ong are determined by linear regression o
exponentially sampled points on the integrated correlation fu
tions. The errors on dimension come from linear regression over
last five data in sequences as in Fig. 6.

a g D2 D1

p~A521!/4 0.9060.07 0.9060.05 0.9760.02
p&/4 0.9560.02 0.9560.02 0.9860.01
pe/8 0.9760.01 0.9560.02 0.9860.01
p2/8 0.9760.01 0.9760.02 0.9960.01
p)/4 0.9760.01 0.9760.01 0.9960.005
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6388 55ROBERTO ARTUSO, GIULIO CASATI, AND ITALO GUARNERI
puted microcanonical correlation functions for the integra
casea5p/3: with our choice of observablesC~`!50 and the
results are plotted in Figs. 8 and 9. Though the correla
function C(t) has a quite complex behavior, which we d
not analyze in detail, it seems to possess an envelope s
fying the law suggested in@7# ~which for the present cas
predicts a 1/At decay!. In Fig. 8 we plot the behavior of the
integrated correlation function, which again exhibits
power-law decay to zero, with an exponentg50.8960.01.
Again this coincides approximately withD2 calculated via
inverse Fourier transform of the correlation sequence:

FIG. 7. lnuC(t)u vs lnt for a5p2/8. The phase average refers
23107 points.

FIG. 8. lnCint(t) vs lnt for a5p/3. Phase average refers to 17

initial conditions.
e

n

tis-

is

procedure givesD2.0.90. We noted the Introduction that fo
generic rational values ofa the system is not integrable, a
invariant surfaces are topologically distinct from tori~and
possess higher genus!: we have preliminary indications tha
microcanonical averages in this case are qualitatively dif
ent from the integrable situations, and in particular a dec
ing upper envelope forC(t) is no longer observed.

Directional dynamics

Here we leave the global phase space and investigate
motion on invariant surfacesRu , individuated by the fraction
connectinga to p, and a choice of a direction in the fu
phase space~see the first section!. As a specific example we
investigated the casea5p/16 ~where the invariant surface
have the topology of a sphere with four handles!, fixing as
phase space angleu051.873 817 640 780 35. In this case w
analyzed the dynamics in terms of the one-dimensio
Birkhoff-Poincarémap, and thus computeCdd(n) and the
corresponding integrated counterpart

Cddu int~n!5
1

n (
k50

n21

uCdd~k!u2. ~16!

The results are here fully consistent with weak mixing
maximalergodic property, asCdd(n) is not converging to
zero in our numerical simulation, whileCddu int(n) vanishes
according to a power law~see Figs. 10 and 11!. Again the
decay exponent is consistent with the correlation dimens
~we haveg50.7960.05, whileD2.0.8!. Here we may also
analyze the growth rate of moments, according to Eq.~15!.
An example is provided in Fig. 12, where we consid
m(1/3)(n), which grows algebraically, with an expone
w~1/3!/~1/3!.0.885 ~the information dimension—which
bounds the normalized growth rate from below—is in th
caseD1.0.88.

FIG. 9. lnuC(t)u vs lnt for the same case as Fig. 8; the dash
straight line has a slope2 1

2.
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As a last remark we present an investigation ona5p/10,
where different u0 are considered. From the behavi
of Cddu int(n) ~see Fig. 13! it is clear that dynamical~and
thus spectral! properties are highly sensitive to the choi
of u0.

IV. CONCLUSIONS

We have performed a series of numerical investigati
on right triangular billiards. Our purpose was to che
whether the conjectures~or generic-nonconstructive results!,

FIG. 10. lnCdduint(n) vs lnn for a5p/16, and the value ofu0
reported in the text. We considered 210 collisions, and averaged
over 107 initial conditions; the dashed straight line has a slo
2D2.20.8.

FIG. 11. lnuCdd(n)u vs lnn for the same case as Fig. 10.
s

based on remarkable mathematical analysis, are suscep
to be scrutinized by direct investigations. We have fou
evidences of ergodic and weakly mixing behavior for t
global dynamics of ‘‘irrational’’ triangles, where, however,
mixing property is not ruled out. In the case of reduced d
crete dynamics we have instead clear evidence of weak m
ing as a maximal ergodic property.

In both cases weak mixing decay rates~as well as mo-

FIG. 12. lnm(1/3)(n) vs lnn for the same case as Figs. 10 and 1
The dashed line was obtained by using a Fourier basis of 212 ele-
ments, while the full line was obtained with a basis of 217 elements.
The dotted straight line has a slopeD1/3.0.89/3.

FIG. 13. lnCdduint(n) vs lnn for a5p/10: the full line refers to
u051.873 817 640 780, the dashed line tou05&, and the dotted
line tou05e/3. Each curve is obtained by considering 211 collisions,
and a phase average over 107 initial conditions.
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ments spreading for directional dynamics! are in agreemen
with exponents related to scaling properties of the spec
measure~namely,D2 andD1!. Also microcanonical, noner
godic averages for rational triangles behave in accorda
with theoretical expectations.
rd
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